Welcome To Website IAS

Hot news
Achievement

Independence Award

- First Rank - Second Rank - Third Rank

Labour Award

- First Rank - Second Rank -Third Rank

National Award

 - Study on food stuff for animal(2005)

 - Study on rice breeding for export and domestic consumption(2005)

VIFOTEC Award

- Hybrid Maize by Single Cross V2002 (2003)

- Tomato Grafting to Manage Ralstonia Disease(2005)

- Cassava variety KM140(2010)

Centres
Website links
Vietnamese calendar
Library
Visitors summary
 Curently online :  12
 Total visitors :  7481505

High Temperatures Can Trigger a Reaction in a Plant`s RNA
Sunday, 2018/11/11 | 06:54:56

PennState University researchers used rice seedlings to show that the stress of hotter temperatures may trigger a response in a plant's ribonucleic acid (RNA), which is a part of a cells' genetic messaging system, to manage this change in its environment.

 

The researchers studied over 14,000 different RNAs to look for changes in the RNA. Thus, they searched for changes in RNA's intricately folded structures that could signal acute heat stress. Since RNA is single-stranded, unlike the double-stranded DNA, it is able to fold back on itself and form more complex folds than DNA. They exposed two-week old rice seedlings to above normal temperatures for just ten minutes and compared with the control plants.

 

Results showed that the folds in the RNA of plants suffering from heat stress were looser than those in the control plants. The unfolding of the mRNA, a particular type of RNA, which transfers DNA instructions to the ribosome in a cell during the protein-making process, was also found to be correlated with a loss in the abundance of mRNA, suggesting that mRNA unfolding promotes its degradation, a method that cells use to regulate which genes express and when.

 

According to one of the researchers, Philip Bevilacqua, the results give hints on next steps for future research into more heat and drought resistant crops.

 

"So, if loss of structure results in loss of abundance and if that loss of abundance is not optimal, then you could imagine that we could change the sequences of the ends of the RNA, making them more stable, and, therefore, stabilize the production of those proteins," he said.

 

Read more from Penn State.

 

Figure: A new study used rice seedlings to demonstrate that the stress of hotter temperatures may trigger a response in a plant’s RNA to manage the change in its environment. Image: Peter Nguyen

Back      Print      View: 346

[ Other News ]___________________________________________________
  • Egypt Holds Workshop on New Biotech Applications
  • UN Agencies Urge Transformation of Food Systems
  • Taiwan strongly supports management of brown planthopper—a major threat to rice production
  • IRRI Director General enjoins ASEAN states to invest in science for global food security
  • Rabies: Educate, vaccinate and eliminate
  • “As a wife I will help, manage, and love”: The value of qualitative research in understanding land tenure and gender in Ghana
  • CIP Director General Wells Reflects on CIP’s 45th Anniversary
  • Setting the record straight on oil palm and peat in SE Asia
  • Why insect pests love monocultures, and how plant diversity could change that
  • Researchers Modify Yeast to Show How Plants Respond to Auxin
  • GM Maize MIR162 Harvested in Large Scale Field Trial in Vinh Phuc, Vietnam
  • Conference Tackles Legal Obligations and Compensation on Biosafety Regulations in Vietnam
  • Iloilo Stakeholders Informed about New Biosafety Regulations in PH
  • Global wheat and rice harvests poised to set new record
  • GM Maize Harvested in Vietnam Field Trial Sites
  • New label for mountain products puts premium on biological and cultural diversity
  • The Nobel Prize in Physiology or Medicine 2016
  • Shalabh Dixit: The link between rice genes and rice farmers
  • People need affordable food, but prices must provide decent livelihoods for small-scale family farmers
  • GM Seeds Market Growth to Increase through 2020 Due to Rise in Biofuels Use

 

Designed & Powered by WEBSO CO.,LTD